Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments.

نویسندگان

  • Hamed Arami
  • R M Ferguson
  • Amit P Khandhar
  • Kannan M Krishnan
چکیده

PURPOSE Magnetic particle imaging (MPI) is a recently developed imaging technique that seeks to provide ultrahigh resolution and tracer sensitivity with positive contrast directly originated from superparamagnetic iron oxide nanoparticles (NPs). MPI signals can be generated from a combination of Néel relaxation, Brownian rotational diffusion, and hysteretic reversal mechanisms of NPs in response to applied magnetic fields. When specific targeting of organs, such as carcinoma and endothelial cardiovascular cells, is needed, different behavior may be expected in immobilized NPs, due to complete or partial elimination of the Brownian motion. Here, the authors present an experimental investigation of the MPI spatial resolution and signal intensities as a function of a wide range of median core sizes of NPs under four representative conditions, including after immobilization in a tissue equivalent medium. METHODS Monodisperse hydrophobic NPs with median core diameters (d0) ranging from 7 to 22 nm were synthesized in organic media and subsequently dispersed in aqueous solution after a facile surface modification. Morphology, median size, size distribution, and magnetic properties of the NPs were investigated. Hydrophobic and hydrophilic NPs with various core sizes were immobilized in trioctyl phosphine oxide and agarose gel, respectively. Their size-dependent performance as MPI tracers for system matrix and x-space image reconstruction was evaluated using magnetic particle spectrometry (MPS) and compared with the free rotating counterparts. RESULTS Immobilized NPs with core diameters smaller than ≈ 20 nm have similar spatial resolution, but lower signal intensities when compared with their free rotating counterparts. Compared to their performance in solution, spatial resolution was improved, but signal intensity was lower, when larger NPs with core size of 22 nm were immobilized in agarose. Same trends were observed in signal intensities, when considering either system matrix or x-space approaches. The harmonic and dm/dH signal intensities changed linearly and the spatial resolution did not change with decreasing NP concentration up to 15 μg/ml. CONCLUSIONS The results show that the MPI signal is very sensitive to both NP size and environment. The authors' calculations show that Brownian rotational diffusion is slower than the field switching cycle and, therefore, it has minimal influence on MPS signals. dm/dH analyses show that Néel relaxation is the dominant mechanism determining MPI response in smaller NPs (d0 < ≈ 20 nm). Larger NPs show hysteretic reversal when the applied field amplitude is large enough to overcome the coercivity. Linear variation of the MPS signal intensity with iron concentration but with uniform spatial resolution enables quantitative imaging for a range of applications, from high-concentration bolus chase imaging to low-concentration molecular imaging (while the authors' instrument is noise-limited to ≈ millimolar iron concentrations, nanomolar sensitivity is expected for MPI, theoretically). These results pave the way for future application of the authors' synthesized tracers for immobilized or in vivo targeted MPI of tissues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic hyperthermia and MRI relaxometry with dendrimer coated iron oxide nanoparticles

Introduction: Recently, some studies have focused on dendrimer nanopolymers as an MRI contrast agent or a vehicle for gene and drug delivery. Considering the suitable properties of these materials, they are appropriate candidates for coating iron oxide nanoparticles which are applied to magnetic hyperthermia. To the best of our knowledge, the novelty of this study is the inves...

متن کامل

Tracer design for magnetic particle imaging (invited).

Magnetic particle imaging (MPI) uses safe iron oxide nanoparticle tracers to offer fundamentally new capabilities for medical imaging, in applications as vascular imaging and ultra-sensitive cancer therapeutics. MPI is perhaps the first medical imaging platform to intrinsically exploit nanoscale material properties. MPI tracers contain magnetic nanoparticles whose tunable, size-dependent magnet...

متن کامل

Intracellular performance of tailored nanoparticle tracers in magnetic particle imaging.

Magnetic Particle Imaging (MPI) is a quantitative mass-sensitive, tracer-based imaging technique, with potential applications in various cellular imaging applications. The spatial resolution of MPI, in the first approximation, improves by decreasing the full width at half maximum (FWHM) of the field-derivative of the magnetization, dm/dH of the nanoparticle (NP) tracers. The FWHM of dm/dH depen...

متن کامل

Proton Nuclear Magnetic Resonance (NMR) Relaxometry in Soil Science Applications

Proton NMR relaxometry is a very powerful tool for investigating porous media and their interaction with water or other liquids and the mobility and interaction of organic molecules in solution. It is commonly used in material science or earth science. However, it is only scarcely applied in soil science although it shows great potential for helping to understand water uptake into the soil matr...

متن کامل

Size Reproducibility of Gadolinium Oxide Based Nanomagnetic Particles for Cellular Magnetic Resonance Imaging: Effects of Functionalization, Chemisorption and Reaction Conditions

We developed biofunctionalized nanoparticles with magnetic properties by immobalizing diethyle-neglycol (DEG) on Gd2O3, and PEGilation of small particulate gadolinium oxide (SPGO) with two me-thoxy-polyethyleneglycol-silane (mPEG-Silane 550 and 2000 Da) using a new supervised polyol route, described recently. In conjunction to the previous study to achieve a high quality synthesis and increase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 40 7  شماره 

صفحات  -

تاریخ انتشار 2013